Reservoir Computing: An investigation of biophysical neuron modeling
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Background - —~ RC Nengo Model Spiking Datasets

The Mind in Vitro (MiV) research group's overarching | V552 a\Y We used the neurological simulator Nengo to make our reservaoir. We used SNNTorch to convert an increasing sine wave
Original Increasing Sine Wave

qoal s to create a computational system based on ‘, - ' 3 i (pictured left) to spikes. The following raster plots represent
neural substrates. Our project is an investigation of ' |

reservoir computing (RC), a potential algorithm that can B S | ™ 100
harness the properties of neurons.

when a spike occurs in specific neurons in a neural network.
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We tuned two major reservoir parameters: reservoir size and
spectral radius. Reservoir size caused overfitting which made us
Output 1 test reqularizing the readout training method as well.
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Reservoir computing (RC) is a machine learning Recurrent neural network
architecture that frequently uses RNNs, in

which the RNN is fixed and only its readout is
trained [1] RC iS most commonly Used for Output 2 Impact of Regularization on Testing MSE for Reservoir with n = 1000, sr = 0.36

temporal classification and prediction tasks [2]. Output 3
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Fig 2: Above: RNN (top) vs RC architecture (bottom)[2]

o Trained on output via ridge
regression, MLP, etc.
o Only layer of RC that is learned
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RC Process:

e Input signal is fed into model
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components of INput S|gnal to hlgher parameters. Bottom: Compar/ngt theé’ef?séllts cgf??s.elil)lz)e ridge regression (left) with our Fig 6: For the increasing sine wave (see Ij:ig. t45' spike trains shown in rate-encoded
une model (rig

(top), latency-encoded (middle), and delta-modulated (bottom) strategies.

dimensional plane
o Similar to SVM
Temporal Input Projection

Fig 3: Above: The reservoir projects the input onto o This projection is the readout COHCIUSiOH aIlCl FUtUI"Q WOI"k ACknOWledgementS

higher di ional pl imil VM [3]. . . . .
igher dimensional plane, similar to a SVM [3] Readout is trained on the target With some parameter tuning, our model is better at We would like to thank Ananya Yammanuru, Nancy Amato, Marco

training the temporal elements of a signal than baseline Morales, Courtney McBeth, Rachel Ann Moan, Seung Hyun Kim, Frithjof
A, ridge regression. Gressmann, Simon Kato, Parasol Lab, CS-SRP, IGB, and CRA-WP.
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Overall: To assess a potential model for neurological computation. Next ste.ps: | o , R f
e Compare baseline ridge regression model to RC model for temporal data * Continue investigating parameters and architectures ererences
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