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Fig 3: Above: The reservoir projects the input onto a
higher dimensional plane, similar to a SVM [3].
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Background
The Mind in Vitro (MiV) research group's overarching
goal is to create a computational system based on
neural substrates. Our project is an investigation of
reservoir computing (RC), a potential algorithm that can
harness the properties of neurons. 
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We used the neurological simulator Nengo to make our reservoir. 

Continue investigating parameters and architectures
for Nengo RC model
Test Nengo RC model on spiking datasets
Use MiV simulator to implement RC model and
compare this with Nengo model

With some parameter tuning, our model is better at
training the temporal elements of a signal than baseline
ridge regression.

Next steps:

Input signal is fed into model
Reservoir projects temporal
components of input signal to higher
dimensional plane

Similar to SVM
This projection is the readout
Readout is trained on the target

RC Process:

Reservoir computing (RC) is a machine learning
architecture that frequently uses RNNs, in
which the RNN is fixed and only its readout is
trained [1]. RC is most commonly used for
temporal classification and prediction tasks [2]. 
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Fig 4: Input signal that we used to train and test the reservoir

Fig 5: Top: The impact of regularization on preventing overfitting after tuning reservoir
parameters. Bottom: Comparing the results of baseline ridge regression (left) with our

tuned RC model (right)

We tuned two major reservoir parameters: reservoir size and
spectral radius. Reservoir size caused overfitting which made us
test regularizing the readout training method as well. 

Compare baseline ridge regression model to RC model for temporal data
Test the impact of tuning different RC model parameters
Prepare to model with MiV simulator, which only accepts spiking data
Convert real-valued data into spike trains
Compare spikes for different encoding methods

Overall: To assess a potential model for neurological computation.

We used SNNTorch to convert an increasing sine wave
(pictured left) to spikes. The following raster plots represent
when a spike occurs in specific neurons in a neural network.
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Fig 2: Above: RNN (top) vs RC architecture (bottom)[2]

Fig 6: For the increasing sine wave (see Fig. 4) spike trains shown in rate-encoded
(top), latency-encoded (middle), and delta-modulated (bottom) strategies. 

Fig 1: Neuron culture
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