Reservoir Computing: An investigation of
biophysical neuron modeling

Ashley Chen!, Jennifer Xia?, Ananya Yammanuru?, and Nancy M. Amato?

LUniversity of Minnesota Twin-Cities, Department of Computer Science and Engineering
2University of lllinois Urbana-Champaign, Department of Computer Science

Summer 2023

The Mind in Vitro (MiV) investigation’s overarching goal is to study
the potential for computation using living neurons as an alternative to
von Neumann architectures. Our project is an investigation into reservoir
computing (RC), a potential architecture which can use a neuron culture
as a “reservoir.” RC is a machine learning strategy most commonly used
for temporal classification and prediction tasks. In our summer research,
we explored implementing RC using the biophysical neuron simulator
Nengo, while adjusting a variety of parameters, to assess the potential
of RC for neurological computation. Results show that while RC isn’t
the most precise model, it is better at identifying temporal attributes as
compared to linear regression.

1 Introduction

The overarching goal of the NSF-funded Mind in Vitro (MiV) investigation is to
study the potential for computation using living neurons. This form of computation
acts as an alternative to our current digital system based on von Neumann archi-
tectures and boolean logic. While digital computing offers high speed and accuracy,
shifting our focus to neural substrates opens new possibilities for computational
systems capable of cognitive behaviors such as learning, adaptability, and capacity
under uncertain conditions [1]. Our project involves reservoir computing (RC), a
potential avenue for neurological computation for the MiV investigation.

1.1 Reservoir Computing

RC is a machine learning architecture in which an input is fed into a reservoir of
recurrently connected nodes. The recurrent connections between nodes introduces
short-term memory capabilities to the reservoir [2] and non-linearly projects the
input into a higher-dimensional state which makes it easier to linearly separate the
temporal patterns within the input [3]. The higher-dimensional state is known as
the readout and is then trained on the target output using some machine learning

https://compositionality-journal.org/papers/
https://compositionality-journal.org/papers/

method, typically linear regression [4]. The reservoir can be any type of network as
long as the network exhibits dynamic internal states. RC has even been shown to
work with a bucket of water used as the reservoir [5]. However, Recurrent Neural
Networks (RNNs) are the most common reservoir choice [4], which is why we use
RNNs as our reservoir for this paper. Figure 1 shows the basic schema of the RC
architecture.

1.2 Motivation

The RC framework of having a large,
fixed RNN with random weights and

a training method that is only ap- Ingue:1 Read-out1 A
plied to the readout has been indepen- Input 2 ReaE-L2 ’

dently discovered across multiple rele- PRt o ot
vant fields including cognitive neuro- et Reacoutd Sulput

science, computational neuroscience,

Read-out 5

and machine learning [6]. Across these
interdisciplinary areas, there has been
various works [7][8][9] focused on con-
structing RC-based frameworks capa-
ble of cognitive functions, which align
with what we hope to achieve in the
MiV investigation. Notably, the MiV
NSF proposal mentions that the MiV team was able to create an in vitro chip ca-
pable of Morse code communications using RC further supporting the potential of

exploring RC as a model for more advanced neurological computations.

Fixed connections Trained connections

Figure 1: Basic RC Schema, only the connec-
tions between the readout and the output layer
is trained. The reservoir connections remain
fixed [4].

In addition, the unique characteristics of the RC architecture gives it advan-
tages. RNNs and its different variants require gradient descent due to having to
train all the recurrent connections [2]. In comparison, RC only requires training on
the readout. RC doesn’t have to worry about a common issue with gradient descent,
exploding /vanishing gradients, which means faster training and more reliable con-
vergence. Finally, RC has advantages over non-recurrent machine learning models.
Projection and short-term memory capabilities induced by the recurrent connections
within the reservoir is why RC is especially useful for temporal classification and
prediction tasks [4].

2 Methods

2.1 Data

For our testing, we decided to use temporal prediction because RC is especially suited
for these types of tasks as explained in the previous section. To avoid complications
such as insufficient, noisy, or inconsistent data, we generated our own data points.
The data points were based on a sine wave model, described by the equation: 50 *
sin((pi / 2) * x) + 0.4 * x, and was composed of 50 periods with 20 data points per

Original Increasing Sine Wave

125

100 A

751

50

output

251

—25 4

—504

T T T T T T
0 200 400 600 800 1000
Time

Figure 2: Input signal that we used train and test the reservoir.

periodic cycle. A graph of our sine wave can be seen in Figure 2. Using these data
points, we set the features to the original data points and the target to the data
points shifted by one position.

2.2 Nengo RC Model

Nengo [10] is a commonly used Python library for simulating biophysical neurons
and the tool that we used to construct our reservoir. We set the neuron type of
our Nengo reservoir to Leaky Integrate-and-Fire (LIF) neurons, a popularly used,
simplified computational model that mimics the firing patterns of real neurons [11].
We also initialized the reservoir weights randomly. Our reservoir was greatly inspired
by this tutorial [12]. We use standard linear regression to train the readout from
the Nengo reservoir and measure the mean squared error (MSE).

2.3 Reservoir Parameters

We tested two key [13] reservoir parameters: reservoir size and spectral radius.
Reservoir size indicates the number of neurons within the reservoir. For our ex-
periments, we set our reservoir size to 100, 200, 300, 400, 500, and 1000 neurons

(n).

The spectral radius is the largest absolute eigenvalue of the reservoir weight
matrix. Spectral radius values close to 1 are best for tasks that require long memory.
Larger spectral radius values cause the reservoir to be more chaotic and introduce
more non-linearity. Smaller spectral radius values cause the reservoir to resist change
and is beneficial when long memory may be harmful [14][15]. We originally set the
spectral radius to one and then tuned the spectral radius value (sr) from there.

2.4 Baseline

We also wanted some standard to test the effectiveness of our Nengo reservoir.
Instead of feeding the input through a reservoir and then training the readout with

linear regression like we do for our Nengo RC model, we decided to just directly train
the input using linear regression. This direct training is our baseline to compare
against our Nengo RC model. We performed comparisons both qualitatively with
observation and quantitatively with MSE.

3 Results

Starting with a reservoir of size n = 100 and sr = 1, the results were qualitatively and
quantitatively quite poor in comparison to baseline. While increasing the reservoir
size did improve the shape of the prediction and lowered the MSE, overall the RC
Nengo model was still significantly underperforming. Then, we started to tune the
spectral radius. While the spectral radius was very volatile, we were eventually able
to tune it with positive results. With a reservoir of size n = 1000 and sr = 0.36,
we managed to greatly improve the training MSE, however, the overfitting started
to occur on the testing data. To combat this overfitting, we added a regularization
parameter to our linear regression model to decrease the influence of individual
features from the readout. A reservoir size of n = 1000, sr = 0.36, and regularization
parameter (alpha) of 50,000 gave the best results so far as can be seen in figure 3.

Impact of Regularization on Testing MSE for Reservoir with n = 1000, sr = 0.36

300

200 ® P

Test MSE

100

alpha=1 alpha=10 alpha=100 alpha=1000 alpha=10000 alpha=50000 alpha=100000

Regularization

Figure 3: The impact of regularization on preventing overfitting after tuning the reservoir
parameters.

We then compared the results of our best tuned Nengo RC model to baseline.
While the MSE between the two was relatively similar, our Nengo RC model did a
better job of learning the temporal parts of the increasing sine wave. Baseline was
unable to learn the shift in the target which is why its prediction is consistently
offset as seen on the left side of figure 4. On the other hand, while our Nengo RC

model wasn’t able to as accurately learn the shape of the target as baseline, our
Nengo RC model was able to learn the shift as seen on the right side of figure 4.

Baseline Testing Output (MSE: 128.2685)

RC Testing Output (MSE: 106.013)

@ prediction @ prediction
L
e
120 4 ° target 120 4 ° target
L] Ld °
°
100 ° 100 4 .
°
[]
o = 80
3 80 2 o ® .
=] 5
o [} a
60
[] []
60 4 L] []
L]
. . 40 - b
[]
40 4 L
[] [] °
L [] 20 ®
T T T T T T T T T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 0.0 2.5 5.0 7.5 10.0 125 15.0 17.5
Time Time

Figure 4: Comparing the results of baseline linear regression (left) with our tuned Nengo RC
model (right).

4 Discussion

This paper describes some of our initial work and results for our investigation of RC
for computation with living neurons. Tuning both the reservoir size and the spectral
radius greatly improved the results of our RC model, but caused overfitting. We were
able to counteract the overfitting using regularization, and our final tuned Nengo
RC model yielded positive results. Overall, our Nengo RC model was able to better
learn the temporal components of our input data than baseline. There is still a lot
of work to be done in exploring RC and improving our Nengo RC model, however,
these results demonstrate the potential of RC for neurological computation.

In the future, we will continue to adjust the Nengo RC model. Currently, there
are some irregularities. For instance, the spectral radius is extremely volatile even
around one which is inconsistent with the literature [14][15][16]. Therefore, these
irregularities need to be investigated. We plan to start by testing simple polynomial
functions rather than a sine curve to simplify our data as much as possible. We
will also continue to investigate different recommended [14] reservoir parameters
including reservoir weight sparsity and distribution, along with the leaking rate of
the neurons. Then, we plan to expand our study by implementing different reservoir
architectures [17]. So far, we have mainly used linear regression as the readout
training method, performed minimal preprocessing of the input, and fed the input
through one reservoir. These are all architecture factors that we plan to adapt and
test in the future. Finally, we eventually want to start comparing the results of our
Nengo RC model to the MiV team’s main simulator [18]. From there, we can start
doing our own personalized tests with the MiV Simulator.

5

Acknowledgements

I worked on this project with my fellow intern Jennifer Xia and graduate mentor
Ananya Yammanuru who were both tremendously helpful and amazing to work with.
I would like to thank Prof. Nancy M. Amato for being a great mentor and for giving
me this opportunity. Additional thanks to Associate Prof. Marco Morales Aguirre,
Courtney McBeth, Rachel Ann Moan, Seung Hyun Kim, Frithjof Gressmann, the
Parasol Lab, UIUC CS-SRP, and CRA-WP for their assistance this summer.

References

1]

I. Schuller and R. Stevens, “Neuromorphic Computing: From Materials to Sys-
tems Architecture,” Report of a Roundtable Convened to Consider Neuromor-
phic Computing Basic Research Needs, 2015. 1

Jaeger, Herbert. “Echo State Network.” Scholarpedia, 2007,
www.scholarpedia.org/article/Echo_state network. 1, 2

M. Lukosevic¢ius and H. Jaeger, “Reservoir computing approaches to recurrent
neural network training,” Computer Science Review, vol. 3, no. 3, pp. 127-149,
2009, doi:10.1016/j.cosrev.2009.03.005. 1

Matteo Cucchi et al. “Hands-on Reservoir Computing: A Tutorial for Practi-
cal Implementation.” IOPScience, 2022, iopscience.iop.org/article /10.1088/2634-
4386/ac7db7/meta. 2

Fernando, Chrisantha, and Sampsa Sojakka. “Pattern Recognition in a Bucket.”
SpringerLink, 2003, link.springer.com/chapter/10.1007/978-3-540-39432-7 _ 63.
2

Matteo Cucchi et al. “Hands-on Reservoir Computing: A Tu-
torial ~ for Practical = Implementation.” IOPScience, 2022, jour-
nals.plos.org/ploscompbiol /article?id=10.1371/journal.pcbi.1004967. 2

Pascanu, Razvan, and Herbert Jaeger. “A Neurodynamical Model for
Working Memory.” Neural Networks, vol. 24, no. 2, 2011, pp. 199-207,
d0i:10.1016/j.neunet.2010.10.003. 2

Hinaut, Xavier, and Peter Ford Dominey. “Real-Time Parallel Processing
of Grammatical Structure in the Fronto-Striatal System: A Recurrent Net-
work Simulation Study Using Reservoir Computing.” PLOS ONE, 2013, jour-
nals.plos.org/plosone/article?id=10.1371/journal.pone.0052946. 2

Hinaut, Xavier, et al. “Corticostriatal Response Selection in Sentence Produc-
tion: Insights from Neural Network Simulation with Reservoir Computing.”
Brain and Language, vol. 150, 2015, pp. 54-68, doi:10.1016/j.bandl.2015.08.002.
2

[10] https://www.nengo.ai/ 3

http://doi.org/doi:10.1016/j.cosrev.2009.03.005
https://iopscience.iop.org/article/10.1088/2634-4386/ac7db7/meta
https://iopscience.iop.org/article/10.1088/2634-4386/ac7db7/meta
https://link.springer.com/chapter/10.1007/978-3-540-39432-7_63
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004967
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004967
https://doi.org/10.1016/j.neunet.2010.10.003
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0052946
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0052946
https://doi.org/10.1016/j.bandl.2015.08.002
https://www.nengo.ai/

[11] Lu, Sijia, and Feng Xu. “Linear Leaky-Integrate-and-Fire Neu-
ron Model Based Spiking Neural Networks and Its Mapping Rela-
tionship to Deep Neural Networks.” Frontiers, 27 July 2022, fron-
tiersin.org/articles/10.3389/fnins.2022.857513/full. 3

[12] https://arvoelke.github.io/nengolib-docs/master /notebooks/examples/full force learning.htm

Q2
I

[13] Lukosevicius, Mantas. “A Practical Guide to Applying Echo State Networks.”
SpringerLink, 2012, link.springer.com/chapter/10.1007/978-3-642-35289-8 36.
3

[14] Herbert, Jaeger. '"The '"Echo State' approach to Analysing

and Training Recurrent Neural Networks." German Na-
tional Research Institute for Computer Science, 2001,
www.bibsonomy.org/bibtex/23d434b04cf1479acf45be9af65{8bc78 /idsia. 3,

5

[15] Verstraeten, David, et al. “Memory versus Non-Linearity in Reservoirs.”
The 2010 International Joint Conference on Neural Networks (IJCNN), 2010,
doi:10.1109/ijenn.2010.5596492. 3, 5

[16] Morales, Guillermo B., and Miguel A. Munoz. “Optimal Input Represen-
tation in Neural Systems at the Edge of Chaos.” arXiv.Org, 12 July 2021,
arxiv.org/abs/2107.05709. 5

[17] Sun, Chenxi, et al. “A Review of Designs and Applications of Echo State Net-
works.” arXiv.Org, 5 Dec. 2020, arxiv.org/abs/2012.02974. 5

18] https://github.com/GazzolalLab/MiV-Simulator 5
p g

https://www.frontiersin.org/articles/10.3389/fnins.2022.857513/full
https://www.frontiersin.org/articles/10.3389/fnins.2022.857513/full
https://arvoelke.github.io/nengolib-docs/master/notebooks/examples/full_force_learning.html
https://link.springer.com/chapter/10.1007/978-3-642-35289-8_36
https://www.bibsonomy.org/bibtex/23d434b04cf1479acf45be9af65f8bc78/idsia
https://doi.org/10.1109/ijcnn.2010.5596492
https://arxiv.org/abs/2107.05709
https://arxiv.org/abs/2012.02974
https://github.com/GazzolaLab/MiV-Simulator

	Introduction
	Reservoir Computing
	Motivation

	Methods
	Data
	Nengo RC Model
	Reservoir Parameters
	Baseline

	Results
	Discussion
	Acknowledgements

